Dial Indicator 를 이용한 Shaft Alignment 의 이해와 절차
Introductions

What exactly is shaft alignment?

- Rotating axes must be colinear during operation.
Introductions

- **Type of misalignment**

 - **Parallel Misalignment**
 - Vertical & Horizontal offset

 - **Angular Misalignment**
 - Vertical & Horizontal Angularity

 - **Combined Misalignment**
 - Parallel Misalignment + Angular Misalignment
Introductions

- **What is the objective of accurate alignment?**
 - To increase the operating lifespan of rotating machinery.
 - Reduce excessive vibration
 - Reduce bearing, coupling & seal failure.
What are the symptoms of misalignment?

- Premature bearing, seal, shaft, or coupling failures.
- Excessive radial and axial vibration.
- High casing temperatures at or near the bearings.
- Excessive amount of oil leakage at the bearing seals.
- Loose foundation bolts or broken coupling bolts.
- The shafts are breaking (or cracking) at or close to the inboard bearings or coupling hubs.
Introductions

- Alignment Methods & Resolution

<table>
<thead>
<tr>
<th>Method</th>
<th>Straightedge</th>
<th>Dial indicator</th>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment resolution</td>
<td>max. 4 mils 1/10 mm</td>
<td>0.4 mil 1/100 mm</td>
<td>0.04 mil 1/1000 mm</td>
</tr>
</tbody>
</table>
Introductions

- Alignment Tolerance
Alignment Procedure

What does take to do each step in the alignment procedure?

1. Preparation - tools, people, training.
2. Obtain information on the machine being aligned.
3. Preliminary checks:
 - Runout, soft foot, coupling, bearings, foundation, base plate, and piping strain on the machines.
4. Measure the shaft positions.
5. Decide who needs to be moved (which way and how much) and then physically reposition the machine(s) vertically, laterally and axially.
6. Install coupling and check for rotational freedom of drive train if possible.
7. Run and check the machinery.
Alignment Procedure

- Preliminary checks:
 - Foundation & Baseplate Pads
 - Piping Strain
 - Vertical & Horizontal Limit = 0.05 mm
 - Runout
 - Shim-pack
 - Soft Foot
 - Limit = 0.05 mm
Alignment Procedure

- **Soft Foot checks**
 - Dial Gage
 - Feeler Gage
Alignment Procedure

- **Runout**
 - Shaft & Coupling
 - Rolling Element Bearing

<table>
<thead>
<tr>
<th>Bearings</th>
<th>mils/in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ball bearings</td>
<td>2.0</td>
</tr>
<tr>
<td>Cylindrical roller bearings</td>
<td>1.0</td>
</tr>
<tr>
<td>Plain bearings</td>
<td>1.0</td>
</tr>
<tr>
<td>Plain thrust bearings</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Alignment Procedure

- **Dial Indicator**
 - Plus & Minus Sign
Alignment Procedure

- Indicator Readings
 - \textit{Amount of Offset} = \textit{TIR}/2, \textit{TIR}: Total Indicator Readings
 - \textbf{Top} + \textbf{Bottom} = \textbf{Right} + \textbf{Left}

\begin{itemize}
 \item \textbf{“A”} \hspace{1cm} \alpha \hspace{1cm} \alpha \hspace{1cm} \textbf{“B”}
 \item \textbf{0.20 mm}
 \item \textbf{+20}
\end{itemize}

\begin{itemize}
 \item \textbf{BAD DATA}
 \item \textbf{MACHINE PROBLEM}
\end{itemize}

\begin{itemize}
 \item \textbf{GOOD DATA}
 \item \textbf{14 L R 15 B}
 \item \textbf{17 L B 5 R}
 \item \textbf{17 L B 5 R}
\end{itemize}
Alignment Procedure

- **Bar SAG**

 \[
 SAG = \frac{TIR}{2}
 \]

![Diagram showing alignment procedure with Bar SAG calculation](image)
Alignment Procedure

- **Corrected Indicator Readings**

- True Indicator Readings = Measured Readings – Sag Readings

\[\text{Corrected Indicator Readings} = \text{Measured Readings} - \text{Sag Readings} \]
Alignment Procedure

- **Alignment Methods Using Indicator**
 - Rim & Face Shaft Alignment
 - Reverse Shaft Alignment

- **Applications**
 - Rim & Face Shaft Alignment
 - Trains where one shaft can’t be rotated during the alignment process.
 - Machines with coupling hubs that are axially close to each other.
 - Machines that have large diameter couplings.
 - Small general purpose machines
 - Reverse Shaft Alignment
 - Long span machines
 - Machines that require precision alignment.
Rim & Face Shaft Alignment

- **Disadvantages**
 - Coupling hub runout will induce an error into the readings.
 - Radial runout up to 0.05 mm
 - Face runout up to 0.01 mm
 - Machines with sleeve bearings can have a face reading error.
 - It is necessary to locate the rotor in a fixed axial position for each sweep.
 - On machines with a large axial floats,
 - such as motor with sleeve bearings.
Rim & Face Shaft Alignment

- Typical Set-up

Diagram:
- Fixed Machine
- Moveable Machine
- Rim Indicator
- Face Indicator
- Diameter at Face Indicator [A]
- Distance to Near Foot [B]
- Distance to Far Foot [C]
- View from Fixed to Moveable
Rim & Face Shaft Alignment

- **Offset Misalignment**

 Rim Readings
 - Fixed Machine
 - Measured Readings: +12, 0, 0, -6, -4, 0, +7
 - Corrected Readings: +18, 0, -4, -2, -6, 0, +10
 - Moveable Machine
 - SAG Readings: -3, 0, 0, -3, 0, 0, 0

 Vertical Offset (Side View)

 - Vertical Offset: 0.09 mm
Rim & Face Shaft Alignment

Angular Misalignment

- **Angular Misalignment**

 - **Vertical Angular Misalignment (Side View)**

 $$\alpha$$

 - **Fixed Machine**

 - **Corrected Readings**

 - **Moveable Machine**

 - **Face**: $\text{ANGnf} = \frac{A}{B}$

 $\text{ANGnf} = \text{Face} \times \left\{ \frac{B}{A} \right\}$

 - **Face**: $\text{ANGff} = \frac{A}{C}$

 $\text{ANGff} = \text{Face} \times \left\{ \frac{C}{A} \right\}$

 - **Face**: $\text{ANGnf} = -6 \times \left\{ \frac{21}{8} \right\}$

 $\text{ANGnf} = -15.75$

 - **Fixed Machine**

 - **Moveable Machine**

 - **Face**

 - **A = 8**

 - **B = 21**

 - **C = 40**

 - **Vertical Angular Misalignment (Side View)**

 - **ANGnf**

 - **Face**
Reverse Shaft Alignment

- **Typical Set-up**

 - **Distance of face to face** $[D]$
 - **View from Fixed to Moveable**
 - **Distance to Near Foot** $[B]$
 - **Distance to Far Foot** $[C]$
Reverse Shaft Alignment

- Graphic Expression (Vertical Movements)

\[
V_0 = \frac{(T - B)}{2}
\]

Vertical Misalignment (Side View)
Reverse Shaft Alignment

- Graphic Expression (Horizontal Movements)

Horizontal Misalignment (Top View)
Movement

- Vertical Movement

DIAL INDICATORS TO MEASURE VERTICAL MOVE AT MEASURED PLANES.

MACH "B"

MEASURED PLANES
SIDE VIEW

MACHINE "B"

END VIEW
Movement

- **Horizontal Movement**

![Diagram of horizontal movement setup]

- Indicator blocks mounted at the true vertical position so horizontal readings are not affected by vertical move.
- Dial indicator mounted on tripods.
- Tripods mounted independently of machine "B".