Dial Indicator 를 이용한Shaft Alignment 의 이해와 절차

- What exactly is shaft alignment?
 - Rotating axes must be colinear during operation.

Introductions

- Type of misalignment
 - Parallel Misalignment
 - Vertical & Horizontal offset

Vertical offset

Horizontal offset

- Angular Misalignment
 - Vertical & Horizontal Angularity

Vertical angularity

Horizontal angularity

- Combined Misalignment
 - Parallel Misalignment + Angular Misalignment

Introductions

What is the objective of accurate alignment?

- To increase the operating lifespan of rotating machinery.
 - Reduce excessive vibration
 - > Reduce bearing, coupling & seal failure.

Introductions

What are the symptoms of misalignment?

- Premature bearing, seal, shaft, or coupling failures.
- Excessive radial and axial vibration.
- High casing temperatures at or near the bearings.
- Excessive amount of oil leakage at the bearing seals.
- Loose foundation bolts or broken coupling bolts.
- The shafts are breaking (or cracking) at or close to the inboard bearings or coupling hubs.

Alignment Methods & Resolution

Alignment Tolerance

• What does take to do each step in the alignment procedure?

- 1. Preparation tools, people, training.
- 2. Obtain information on the machine being aligned.
- 3. Preliminary checks :
 - Runout, soft foot, coupling, bearings, foundation, base plate, and piping strain on the machines.
- 4. Measure the shaft positions.
- Decide who needs to be moved (which way and how much) and then physically reposition the machine(s) vertically, laterally and axially.
- 6. Install coupling and check for rotational freedom of drive train if possible.
- 7. Run and check the machinery.

- Preliminary checks :
 - Foundation & Baseplate Pads
 - Piping Strain
 - Vertical & Horizontal Limit = 0.05 mm
 - Runout
 - Shim-pack
 - Soft Foot
 - Limit = 0.05 mm

- Soft Foot checks
 - Dial Gage
 - Feeler Gage

- Runout
 - Shaft & Coupling

Rolling Element Bearing

ACCEPTABLE RACE RUNOUT, MILS/IN. (REFERENCED TO ROTATING CENTER)

Bearings	mils/in.
Ball bearings	2.0
Cylindrical roller bearings	1.0
Plain bearings	1.0
Plain thrust bearings	0.5

- Dial Indicator
 - Plus & Minus Sign

Indicator Readings

• Amount of Offset = TIR/2, TIR: Total Indicator Readings

• Top + Bottom = Right + Left

Bar SAG

- Corrected Indicator Readings
 - True Indicator Readings = Measured Readings Sag Readings

Alignment Methods Using Indicator

- Rim & Face Shaft Alignment
- Reverse Shaft Alignment

Applications

- Rim & Face Shaft Alignment
 - Trains where one shaft can't be rotated during the alignment process.
 - > Machines with coupling hubs that are axially close to each other.
 - > Machines that have large diameter couplings.
 - Small general purpose machines
- Reverse Shaft Alignment
 - Long span machines
 - Machines that require precision alignment.

Disadvantages

- Coupling hub runout will induce an error into the readings.
 - Radial runout up to 0.05 mm
 - Face runout up to 0.01 mm
- Machines with sleeve bearings can have a face reading error.
 - > It is necessary to locate the rotor in a fixed axial position for each sweep.
 - > On machines with a large axial floats,
 - such as motor with sleeve bearings.

Typical Set-up

Offset Misalignment

Reverse Shaft Alignment

Typical Set-up

Reverse Shaft Alignment

Graphic Expression (Vertical Movements)

Reverse Shaft Alignment

Graphic Expression (Horizontal Movements)

Movement

Vertical Movement

Movement

Horizontal Movement

